Advantages

• Contactless: no wear
• Compact
• Low cost
• Low power consumption
• High accuracy
• Insensitive to dust or particle contamination
• Compatible with out-of-sight or integrated magnetic targets

Applications

• Localisation
• Process control
• Presence detection
• Thickness measurement
• Detection of movement and deformations, measurement of speed

Magnetic Position Sensing Solutions

Depending on different parameters such as available power, sensor accuracy or dimensions, different sensor structures can be proposed by Cedrat Technologies, with detection ranges up to 40 mm. Hereafter 3 different structures are described:

• HMP: Hall sensor and Magnet Position sensor
• PCI: Pot shape Coil Inductive sensor
• PCT: Planar shape Coil Transformer

HMP: Hall Sensor and Magnet Position Sensor

The most common set-up (see figure 1) uses a magnetic sensor coupled to a permanent magnet which is placed on the target. The measuring principle is that the field emitted by the permanent magnet decreases when the distance from the magnet increases. The magnetic sensor measures the intensity of the field, which enables to determine the distance between the sensor and the magnet. The magnetic field sensor is usually chosen among low cost Hall-effect sensors.

Using a permanent magnet as the magnetic field source instead of an active source is particularly well suited for applications with limited electrical power availability, since no power is required to...
generate the excitation field. Additionally, there is no need for any power wire connection.

Cedrat Technologies has developed an alternative structure (see figure 2) where the magnet is integrated close to the sensor and the measured magnetic field is modified by a target made of magnetic material on the moving part. The advantage is that since magnetic material targets are often already present on the mobile parts, its modification is not required. The concept has been patented and the application example of this concept is described in the last section of the document.

> **PCI: Pot shape Coil Inductive sensor**

The PCI is another classical inductive sensor type (see figure 3) which also doesn’t require any wire connection on the mobile part. The mobile part includes a magnetic target, which may be a simple plate of magnetic material. The variable magnetic coupling between the coil and the target induces a variation of coil inductance, which is then measured by the signal conditioner.

> **PCT: Planar shape Coil Transformer**

The Planar Coil Transformer solution (see figure 4) is also contactless and wireless. The coupling between excitation and detection is modified by magnetic interactions with the target made of magnetic material. This sensor works similarly to a LVDT (linear variable differential transformer) and the detected position is directly linked to the magnitude of the alternative output voltage. The planar coil is integrated directly on the PCB of the conditioner, which makes the assembly very easy.
Selection Guide

Detection range is adjusted by choosing the magnet type (ferrite or rare earth magnets) and the size of emitters and receivers. Design services are proposed by Cedrat Technologies to fit the sensor definition to the application constraints.

Similarly, technological brick of electronics have been developed for each sensor technological solution. Adaptation according to the application is available on request.

<table>
<thead>
<tr>
<th>SENSOR NAME & ADVANTAGES</th>
<th>TYPE</th>
<th>CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMP (Hall Magnet Position sensor)</td>
<td>Hall sensor</td>
<td>Magnetic field voltage Hall sensor</td>
</tr>
<tr>
<td>• Low cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• High sensitivity up to 30mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Very high bandwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI (Pot Coil Inductive sensor)</td>
<td>Inductance measurement</td>
<td>Excitation coil with shielding ferrite</td>
</tr>
<tr>
<td>• Very low supply power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Shielded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Only two wires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• High sensitivity up to 25mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCT (Planar Coil Transformer sensor)</td>
<td>PCT sensing element</td>
<td>Excitation coil integrated within PCB</td>
</tr>
<tr>
<td>• Low cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Flat, low weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Easy integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• High sensitivity up to 40mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Sensor principles comparison table](image-url)
Contactless Inductive Sensor

Application Example: Tyre Wear Sensor

In the frame of the long-term partnership between Cedrat Technologies and Michelin, a series of medium range sensors based on the previously described concepts have been developed. Since the structure of tyres integrates magnetic steels to improve the tyre rigidity (carcass), Cedrat Technologies proposed to derive tyre wear from the measurement of the distance between this magnetic structure and the sensor.

As illustrated on fig. 8, the sensor measures the distance to the steel cords which depends on the thickness of rubber in-between. This allows to obtain the carving depth of the tyre and thus its wear.

The principle has been patented for a series of inductive sensors which are relevant for this application.

Cedrat Technologies offers to apply these patented sensors for new applications, do not hesitate to contact our team of experts for further information.

Keywords

Contactless, magnetic, sensor, position, speed, detection, inductive, hall, coil, electromagnetic, proximity sensor, positioning, magnet.