These specifications are for the National Instruments VirtualBench VB-8012 only. These specifications are valid following 30 minutes of warmup and are typical at 25 °C unless otherwise noted. For feature differences between the VirtualBench application for Windows and iPad, go to `ni.com/info` and enter `vbfeatures`.

Mixed Signal Oscilloscope

Analog Channels

Vertical System

<table>
<thead>
<tr>
<th>Français</th>
<th>Deutsch</th>
<th>日本語</th>
<th>한국어</th>
<th>简体中文</th>
</tr>
</thead>
<tbody>
<tr>
<td>ni.com/manuals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of channels.................................2 single-ended, non-isolated

Bandwidth (-3 dB)\(^1\)..........................100 MHz

Resolution...8 bits

Accuracy\(^2\)...±2% of input, ±1% full scale (V\(_{pk-pk}\))

Input coupling.......................................DC, AC

\(^1\) Bandwidth using the accessory oscilloscope probe in 10X mode.

\(^2\) Indicates warranted specifications valid at T\(_{cal}\) ±5 °C. Temperature coefficients are calculated using the temperature change from last external calibration.
Vertical sensitivity (range)

- 10 mV/div (100 mV pk-pk)
- 20 mV/div (200 mV pk-pk)
- 50 mV/div (400 mV pk-pk)
- 100 mV/div (1 V pk-pk)
- 200 mV/div (2 V pk-pk)
- 500 mV/div (4 V pk-pk)
- 1 V/div (10 V pk-pk)
- 2 V/div (20 V pk-pk)
- 5 V/div (40 V pk-pk)

Input impedance.................................1 MΩ || 20 pF

Table 1. DC Offset Range

<table>
<thead>
<tr>
<th>Range</th>
<th>Programmable Offset Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mV/div, 20 mV/div, 50 mV/div</td>
<td>±5 V</td>
</tr>
<tr>
<td>100 mV/div, 200 mV/div, 500 mV/div, 1 V/div, 2 V/div, 5 V/div</td>
<td>±20 V</td>
</tr>
</tbody>
</table>

Acquisition modes..........................Sample, peak detect, averaging

Horizontal System

Maximum sample rate........................1 GS/s single channel, 500 MS/s/channel, dual channel

Maximum record length.......................1 MS/channel
Digital Channels/Logic Analyzer

Vertical System

Number of channels...34
Maximum input frequency...100 MHz
Input voltage..0 to 5 V

Note Mixed signal oscilloscope digital channels are designed to withstand accidental overvoltage from signals on the VB-8012 or similar devices. They are not recommended for use with signals likely to exceed 0 to 5 V in normal operation.

Input threshold...Programmable, 0 to 2.0 V
Threshold accuracy...350 mV
Additional/internal channels..Digital I/O lines, function generator start, external trigger (TRIG), power line frequency

Horizontal System

Timing mode sample rate..1 GS/s (down to ~15 kS/s)
Maximum external sample clock rate...............................100 MHz

Record length
 Typical..1 MS
 Minimum...4 kS

Decimation...External Sample Clock, 1:1, 2:1, and n*4:1 where n is an integer

Maximum sample compression...2^15 to 1

3 Programable input threshold is only available with the NI VirtualBench driver. The VirtualBench application has an input threshold of 1.65 V.

4 Under most conditions, the logic analyzer can acquire 1 MS of data. Under some conditions with very high sustained activity on multiple inputs, the logic analyzer may only capture 4 kS of data.
Triggering

Trigger modes.................................Normal, Auto, Single, Force

Trigger sources.................................Oscilloscope analog channels, oscilloscope digital channels, function generator start, digital I/O lines, external trigger (TRIG), power line frequency

Trigger types
 Analog...Edge with hysteresis
 Digital...Edge, glitch5, level, pattern

Trigger resolution
 1 GS/s mode.......................................1 ns
 500 MS/s mode....................................2 ns

Trigger export..................................Available through external trigger (TRIG)

Waveform Measurements

Oscilloscope time5..............................Period, frequency, positive duty cycle, negative duty cycle, positive pulse width, negative pulse width, rise time, fall time, rise rate, fall rate

Oscilloscope voltage6..............................High, low, amplitude, maximum, minimum, peak-to-peak, overshoot, undershoot, RMS, mean, cycle RMS, cycle mean

Logic analyzer time6..............................Period, frequency, positive duty cycle, negative duty cycle, positive pulse width, negative pulse width

Waveform Math

Operations7..A + B, A - B, A * B, FFT

5 Glitch triggers are only available with the NI VirtualBench driver.
6 Waveform measurements are only available in the VirtualBench application.
7 Waveform math is only available in the VirtualBench application.
Function Generator (FGEN)

Waveforms...Sine, square, ramp/triangle, DC, arbitrary

Update rate..125 MS/s

Resolution...14 bits

Number of channels.................................1

Output impedance..50 Ω

Switchable filter.................................36 MHz lowpass, 7-pole, elliptical

Sine

Maximum frequency.................................20 MHz

Total harmonic distortion

1 MHz...-55 dBc
10 MHz..-50 dBc

Spurious free dynamic range.................-70 dB at 1 MHz (non-harmonic)

Phase noise (1 MHz)..............................-115 dBc/Hz at 10 kHz offset

Square

Maximum frequency.................................5 MHz

Rise/fall time..<20 ns (10% to 90%)

Overshoot..<5%

Jitter...8 ns cycle-to-cycle

Ramp/triangle maximum frequency...........150 kHz

Accuracy (with >10 kΩ load)

Amplitude (1 kHz sine)..............................±(1% of setting + 5 mV)

DC...±(1% of setting + 5 mV)

Output range

50 Ω...±6 V

Hi-Z (>10 kΩ)...±12 V

DC offset

50 Ω...±6 V

Hi-Z (>10 kΩ)...±12 V

Note The combination of signal amplitude and DC offset cannot exceed the output range specifications.

Arbitrary waveforms are only available with the NI VirtualBench driver.
Switchable filters are only available with the NI VirtualBench driver. The VirtualBench application automatically enables the lowpass filter in sine mode.
Frequency
- Accuracy: \(\leq 100 \text{ ppm} \)
- Resolution: 1 \(\mu \text{Hz} \)

Arbitrary waveform
- Points: 1 MS
- Sample rate: 125 MS/s

Flatness: \(\pm 0.3 \text{ dB} \) to 20 MHz

Protection: Short-circuit protected

Triggering
Trigger types: Start of buffer
Trigger resolution: 8 ns
Trigger export: Available through external trigger (TRIG)

Digital I/O
- Number of channels: 8
- Direction control: Input or output, software-selectable
- Logic level: 5 V compatible LVTTL input, 3.3 V LVTTL output
- Drive strength: 4 mA
- Input voltage: 0 to 5 V

Note: Digital I/O lines are designed to withstand accidental overvoltage from signals on the VB-8012 or similar devices. They are not recommended for use with signals likely to exceed 0 to 5 V in normal operation.

DIO channel pull resistors: 10 k\(\Omega \), pull-down

External Power
3.3 V output
- Voltage: 3.3 V \(\pm 10\% \)
- Current: 20 mA

\(^{10} \) The function generator can only produce a trigger.
Digital Multimeter

Functions
- DC voltage, AC voltage, DC current, AC current, resistance, diode, continuity

Resolution
- 5½ digits

Sample rate
- 5 S/s

Caution Do not use this device for connection to signals or for measurements within Measurement Categories III or IV. For more information about Measurement Categories, refer to the *Safety Voltages* section.

Input protection
- Resistance, diode: Up to 300 V DC
- DC and AC voltage: Up to 300 V DC or 265 V AC_{rms}, 400 V AC peak
- DC and AC current
 - DMM A current: Internal ceramic fuse, 10 A 250 V, time-delay, 5 × 20 mm, T 10A H 250V (Cooper Bussmann part number S505H-10-R at www.cooperbussmann.com)
 - DMM mA current: Internal ceramic fuse, 1.25 A 250 V, time-delay, 5 × 20 mm, T 1.25A H 250V (Cooper Bussmann part number S505H-1.25-R at www.cooperbussmann.com)

Caution Fuses are located on bottom of device underneath door. Use Phillips #1 screwdriver for removal. Ensure all hazardous voltages are disconnected from the device prior to removal of door.

Fuse When this fuse symbol is marked on a device, take proper precautions.

Maximum common-mode voltage
- 300 V DC or AC_{rms}
Table 2. DC Voltage Accuracy

<table>
<thead>
<tr>
<th>Range</th>
<th>Input Impedance</th>
<th>1-Year Accuracy 2 ± (% of Reading + % of Range)</th>
<th>Temperature Coefficient 2 ± (% of Reading + % of Range)/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
<td>>10 GΩ, 10 MΩ</td>
<td>0.015 + 0.005</td>
<td>0.001 + 0.0005</td>
</tr>
<tr>
<td>1 V</td>
<td>>10 GΩ, 10 MΩ</td>
<td>0.015 + 0.005</td>
<td>0.001 + 0.0005</td>
</tr>
<tr>
<td>10 V</td>
<td>>10 GΩ, 10 MΩ</td>
<td>0.015 + 0.005</td>
<td>0.001 + 0.0005</td>
</tr>
<tr>
<td>100 V</td>
<td>10 MΩ</td>
<td>0.035 + 0.005</td>
<td>0.005 + 0.0005</td>
</tr>
<tr>
<td>300 V</td>
<td>10 MΩ</td>
<td>0.035 + 0.005</td>
<td>0.005 + 0.0005</td>
</tr>
</tbody>
</table>

* Add 15 μV if not immediately following offset null.

Table 3. DC Current Accuracy

<table>
<thead>
<tr>
<th>Range</th>
<th>Burden Voltage</th>
<th>1-Year Accuracy 2 ± (% of Reading + % of Range)</th>
<th>Temperature Coefficient 2 ± (% of Reading + % of Range)/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mA</td>
<td><0.03 V</td>
<td>0.070 + 0.020</td>
<td>0.0035 + 0.0010</td>
</tr>
<tr>
<td>100 mA</td>
<td><0.3 V</td>
<td>0.070 + 0.003</td>
<td>0.0020 + 0.0010</td>
</tr>
<tr>
<td>1 A</td>
<td><0.03 V</td>
<td>0.130 + 0.025</td>
<td>0.0065 + 0.0010</td>
</tr>
<tr>
<td>10 A *</td>
<td><0.3 V</td>
<td>0.130 + 0.004</td>
<td>0.0045 + 0.0010</td>
</tr>
</tbody>
</table>

* 30 seconds on, 30 seconds off. Add 300 ppm/A for currents >2.2 A. After measuring >5 A, wait two minutes to get full accuracy in the 1 A range.

Table 4. DC Resistance Accuracy (2-Wire) *, 1 V Open Circuit Voltage

<table>
<thead>
<tr>
<th>Range</th>
<th>Short-Circuit Current</th>
<th>1-Year Accuracy 2 ± (% of Reading + % of Range)</th>
<th>Temperature Coefficient 2 ± (% of Reading + % of Range)/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Ω</td>
<td>170 μA</td>
<td>0.018 + 0.050</td>
<td>0.0010 + 0.0005</td>
</tr>
<tr>
<td>1 kΩ</td>
<td>170 μA</td>
<td>0.018 + 0.005</td>
<td>0.0010 + 0.0005</td>
</tr>
<tr>
<td>10 kΩ</td>
<td>70 μA</td>
<td>0.018 + 0.005</td>
<td>0.0010 + 0.0005</td>
</tr>
</tbody>
</table>
Table 4. DC Resistance Accuracy (2-Wire)*, 1 V Open Circuit Voltage (Continued)

<table>
<thead>
<tr>
<th>Range</th>
<th>Short-Circuit Current</th>
<th>1-Year Accuracy(^2) ± (% of Reading + % of Range)</th>
<th>Temperature Coefficient(^2) ± (% of Reading + % of Range)/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kΩ</td>
<td>10 μA</td>
<td>0.018 + 0.005</td>
<td>0.0010 + 0.0005</td>
</tr>
<tr>
<td>1 MΩ</td>
<td>1.1 μA</td>
<td>0.035 + 0.005</td>
<td>0.0040 + 0.0005</td>
</tr>
<tr>
<td>10 MΩ</td>
<td>1.1 μA</td>
<td>0.085 + 0.005</td>
<td>0.0100 + 0.0005</td>
</tr>
<tr>
<td>100 MΩ</td>
<td>1.1 μA</td>
<td>1.3 + 0.005</td>
<td>0.1000 + 0.0005</td>
</tr>
</tbody>
</table>

* Perform offset nulling.

Caution The input terminals of the DMM are not protected for electromagnetic interference. As a result, the DMM may experience reduced measurement accuracy or other temporary performance degradation when connected to unshielded test leads in an environment with radiated or conducted radio frequency electromagnetic interference.

DC continuity accuracy range\(^{11}\)100 Ω

DC diode test range..2 V

Effective Common-Mode Rejection.................>100 dB

Ratio (CMRR), 1 kΩ

resistance in LO lead

Normal-Mode Rejection Ratio.........................>100 dB

(NMRR), 50/60 Hz ±0.1%

Overrange...105% of range except 300 V

\(^{11}\) DC continuity is only available in the VirtualBench application.
Table 5. AC Voltage Accuracy

<table>
<thead>
<tr>
<th>Range (rms)</th>
<th>Peak Voltage</th>
<th>Frequency</th>
<th>1-Year Accuracy<sup>2</sup> (\pm (% \text{ of Reading} + % \text{ of Range}))</th>
<th>Temperature Coefficient<sup>2</sup> (\pm (% \text{ of Reading} + % \text{ of Range})/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV, 1 V, 10 V, 100 V, 265 V</td>
<td>(\pm 210 \text{ mV, } \pm 2.1 \text{ V, } \pm 21 \text{ V, } \pm 210 \text{ V, } \pm 400 \text{ V})</td>
<td>20 Hz to 45 Hz</td>
<td>0.91 + 0.10</td>
<td>0.01 + 0.005</td>
</tr>
<tr>
<td>20 Hz to 45 Hz</td>
<td>0.30 + 0.05</td>
<td>0.01 + 0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 Hz to 1 kHz</td>
<td>0.21 + 0.05</td>
<td>0.01 + 0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 kHz to 5 kHz</td>
<td>0.12 + 0.05</td>
<td>0.01 + 0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 kHz to 20 kHz</td>
<td>0.35 + 0.05</td>
<td>0.01 + 0.005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. AC Current Accuracy

<table>
<thead>
<tr>
<th>Range (rms)</th>
<th>Peak Current</th>
<th>Burden Voltage (rms)</th>
<th>Frequency</th>
<th>1-Year Accuracy<sup>2</sup> (\pm (% \text{ of Reading} + % \text{ of Range}))</th>
<th>Temperature Coefficient<sup>2</sup> (\pm (% \text{ of Reading} + % \text{ of Range})/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mA</td>
<td>(\pm 10.5 \text{ mA})</td>
<td><0.02 V</td>
<td>20 Hz to 1 kHz</td>
<td>0.20 + 0.01</td>
<td>0.01 + 0.005</td>
</tr>
<tr>
<td>1 kHz to 5 kHz</td>
<td>0.60 + 0.01</td>
<td>0.01 + 0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 mA</td>
<td>(\pm 105 \text{ mA})</td>
<td><0.2 V</td>
<td>20 Hz to 1 kHz</td>
<td>0.20 + 0.01</td>
<td>0.01 + 0.005</td>
</tr>
<tr>
<td>1 kHz to 5 kHz</td>
<td>0.50 + 0.01</td>
<td>0.01 + 0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6. AC Current Accuracy (Continued)

<table>
<thead>
<tr>
<th>Range (rms)</th>
<th>Peak Current</th>
<th>Burden Voltage (rms)</th>
<th>Frequency</th>
<th>1-Year Accuracy (\pm (% \text{ of Reading} + % \text{ of Range}))</th>
<th>Temperature Coefficient (\pm (% \text{ of Reading} + % \text{ of Range})/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 mA</td>
<td>±1.05 A</td>
<td><0.02 V</td>
<td>20 Hz to 1 kHz</td>
<td>0.15 + 0.01</td>
<td>0.01 + 0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 kHz to 5 kHz</td>
<td>0.50 + 0.01</td>
<td></td>
</tr>
<tr>
<td>5 A</td>
<td>±10.5 A</td>
<td><0.2 V</td>
<td>20 Hz to 1 kHz</td>
<td>0.25 + 0.03</td>
<td>0.01 + 0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 kHz to 5 kHz</td>
<td>0.60 + 0.03</td>
<td></td>
</tr>
</tbody>
</table>

Caution The input terminals of the DMM are not protected for electromagnetic interference. As a result, the DMM may experience reduced measurement accuracy or other temporary performance degradation when connected to unshielded test leads in an environment with radiated or conducted radio frequency electromagnetic interference.

Input impedance... 10 MΩ || 200 pF

CMRR, 1 kΩ resistance in LO lead......................... >70 dB (DC to 60 Hz)

DC Power Supply

Outputs... 0 to +6 V/0 to 1 A,
 0 to +25 V/0 to 500 mA (isolated),
 0 to -25 V/0 to 500 mA (isolated)

Note The +25 V and -25 V channels are bank isolated from ground but not from each other.
Table 7. DC Accuracy/Resolution

<table>
<thead>
<tr>
<th>Output</th>
<th>Type</th>
<th>+6 V</th>
<th>+25 V</th>
<th>-25 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC output^2</td>
<td>Voltage</td>
<td>0 to +6 V</td>
<td>0 to +25 V</td>
<td>0 to -25 V</td>
</tr>
<tr>
<td></td>
<td>Current^12</td>
<td>1 A</td>
<td>500 mA</td>
<td>500 mA</td>
</tr>
<tr>
<td>Programming accuracy^2,12</td>
<td>Voltage</td>
<td>± (% of reading + offset)</td>
<td>± (% of reading + offset)</td>
<td>± (% of reading + offset)</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>0.2% + 10 mA</td>
<td>0.15% + 4 mA</td>
<td>0.15% + 4 mA</td>
</tr>
<tr>
<td>Readback accuracy^2,13</td>
<td>Voltage</td>
<td>± (% of reading + offset)</td>
<td>± (% of reading + offset)</td>
<td>± (% of reading + offset)</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>0.2% + 10 mA</td>
<td>0.15% + 4 mA</td>
<td>0.15% + 4 mA</td>
</tr>
<tr>
<td>Programming resolution</td>
<td>Voltage</td>
<td>1.7 mV</td>
<td>6.5 mV</td>
<td>6.5 mV</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>0.30 mA</td>
<td>0.15 mA</td>
<td>0.15 mA</td>
</tr>
<tr>
<td>Readback resolution</td>
<td>Voltage</td>
<td>0.41 mV</td>
<td>1.7 mV</td>
<td>1.7 mV</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>70 µA</td>
<td>35 µA</td>
<td>35 µA</td>
</tr>
<tr>
<td>Load regulation</td>
<td>Voltage</td>
<td>± (% of reading + offset)</td>
<td>± (% of reading + offset)</td>
<td>± (% of reading + offset)</td>
</tr>
<tr>
<td></td>
<td>Current</td>
<td>0.01% + 25 mV</td>
<td>0.03% + 5 mV</td>
<td>0.03% + 5 mV</td>
</tr>
</tbody>
</table>

Overvoltage protection..................30 V (25 V channels) and 10 V (6 V channel)
Reverse voltage protection..................400 mV

External Trigger (TRIG)

Direction control..........................Input or output, software-selectable
Logic level..................................5 V compatible LVTTTL input, 3.3 V LVTTTL output
Drive strength..............................4 mA
Input voltage...............................0 to 5 V

Note The external trigger line is designed to withstand accidental overvoltage from signals on the VB-8012 or similar devices. It is not recommended for use with signals likely to exceed 0 to 5 V in normal operation.

^12 Minimum programmable current limit is 1% of range.
^13 Programming and readback accuracy specified at no load.
^14 Change in output voltage for any load within range.
Connectivity

Wired Interface

USB specification...USB 2.0 Hi-Speed

Wireless Interface

Table 8. Network Protocols and Ports Used

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 80/TCP</td>
<td>HTTP</td>
<td>Device configuration (web, MAX)</td>
</tr>
<tr>
<td>Port 443/TCP</td>
<td>HTTP</td>
<td>Device configuration (web, MAX)</td>
</tr>
<tr>
<td>Port 3580/TCP</td>
<td>Service locator</td>
<td>Device configuration (web, MAX)</td>
</tr>
<tr>
<td>Port 9090/TCP</td>
<td>Configuration only</td>
<td>VirtualBench instrument protocol</td>
</tr>
<tr>
<td>Port 5353/UDP</td>
<td>Multicast DNS</td>
<td>Device discovery</td>
</tr>
</tbody>
</table>

Network IP configuration.................................IPv4, DHCP Client/Server

Radio mode..IEEE 802.11 b,g,n

Wireless modes..AP mode (default), client mode

Frequency band...2.4 GHz ISM

Channel width..20 MHz

Channels...USA 1-11, International 1-13

(12 and 13 client mode only)

TX power..+10 dBm max (10 mW)

Security..Open, WPA, WPA2, WPA2-Enterprise

Enterprise security EAP types..........................EAP-TLS, EAP-TTLS/MS-CHAPv2,

PEAPv0/MS-CHAPv2

Antenna..External RP-SMA omnidirectional dipole
Power Requirements

Caution The protection provided by the VirtualBench hardware can be impaired if it is used in a manner not described in the *NI VB-8012 Safety, Environmental, and Regulatory Information* document.

Voltage input range...100 to 240 VAC, 50/60 Hz

Power consumption..100 W maximum

Power input connector..IEC C13 power connector

Power disconnect..The AC power cable provides main power disconnect. Do not position the equipment so that it is difficult to disconnect the power cable. Depressing the front panel power button does not inhibit the internal power supply.

Calibration

Calibration cycle (digital multimeter, mixed signal oscilloscope, function generator, DC power supply)..1 year

Specified temperature..$T_{\text{cal}} \pm 5 \, ^\circ\text{C}$

Warmup time...30 minutes
Physical Characteristics

Dimensions

Enclosure.. 25.40 cm × 19.05 cm × 7.39 cm
(10.00 in. × 7.50 in. × 2.91 in.)

Enclosure with connectors and antenna.. 25.40 cm × 23.37 cm × 13.97 cm
(10.00 in. × 9.20 in. × 5.50 in.)

Note: Use the VirtualBench instrument in a horizontal orientation. Allow at least 10.16 cm (4.0 in.) of clearance in front and behind the VirtualBench instrument for USB, power, and common connector cabling.

Weight... 2.05 kg (4 lb 8.3 oz)

Connectivity

Mixed signal oscilloscope..................... BNC
Logic analyzer.................................... 2x20 shrouded IDC header
External trigger................................. BNC
Function generator............................ BNC

Digital I/O

Type... Pluggable screw terminal, 3.5 mm
(14 position)

Screw terminal wiring....................... 0.1 to 2.0 mm² (30 to 14 AWG)

Torque... 0.25 N ⋅ m (2.2 lb ⋅ in.)

Digital multimeter................................ 4 mm banana jacks

DC power supply

Type... Pluggable screw terminal, 3.81 mm
(6 position)

Screw terminal wiring....................... 0.1 to 2.0 mm² (30 to 14 AWG)

Torque... 0.25 N ⋅ m (2.2 lb ⋅ in.)

Security cable slot.............................. 1, complies with Kensington security slot dimensions

If you need to clean the device, wipe it with a dry towel.

Safety Voltages

Connect only voltages that are within these limits.
DMM Isolation Voltages

Hazardous Voltage This icon denotes a warning advising you to take precautions to avoid electrical shock.

Channel-to-earth ground

- Continuous: 300 V, Measurement Category II
- Withstand: 3,000 V_{rms}, verified by a 5 s dielectric withstand test

Measurement Category II is for measurements performed on circuits directly connected to the electrical distribution system. This category refers to local-level electrical distribution, such as that provided by a standard wall outlet, for example, 115 V for U.S. or 230 V for Europe.

Caution Do not connect the VirtualBench hardware to signals or use for measurements within Measurement Categories III or IV.

DC Power Supply Isolation Voltages

+25 V and -25 V-to-earth ground: 60 VDC, Measurement Category I continuous

Note Measurement Categories CAT I and CAT O (Other) are equivalent. The input circuits are not intended for direct connection to the MAINs building installations of Categories CAT II, CAT III, or CAT IV.

Environmental

- Operating temperature: 0 to 40 °C
- Storage temperature: -20 to 70 °C
- Operating humidity: 10 to 90% RH, noncondensing
 DMM full accuracy at 10 to 80%
- Storage humidity: 5 to 95% RH, noncondensing
- Cooling: Forced air circulation (positive pressurization) through a fan. Fan speed automatically adjusts according to operating conditions. Intake and exhaust locations are on rear of device. Ensure that the intake and exhaust locations are not obstructed.
Pollution Degree.................................2

Maximum altitude.............................2,000 m

Indoor use only.

Shock and Vibration

Operational shock.............................30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)

Random vibration
 Operating..5 to 500 Hz, 0.3 g_{rms}
 Nonoperating...................................5 to 500 Hz, 2.4 g_{rms} (Tested in accordance with IEC-60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online Product Certification section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for radio equipment and for telecommunication terminal equipment:

- EN 61000-6-4 (IEC 61000-6-4): Emissions
- EN 61000-6-2 (IEC 61000-6-2): Immunity
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 22: Class A emissions
• FCC 47 CFR Part 15B: Class A emissions
• ICES-001: Class A emissions

Note For EMC declarations, certifications, and additional information, refer to the Online Product Certification section.

CE Compliance

This product meets the essential requirements of applicable European Directives, as follows:
• 2006/95/EC; Low-Voltage Directive (safety)
• 2004/108/EC; Electromagnetic Compatibility Directive (EMC)
• 1995/5/EC; Radio and Telecommunications Terminal Equipment (R&TTE) Directive

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the Minimize Our Environmental Impact web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法（中国 RoHS）

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令（RoHS）。关于 National Instruments 中国 RoHS 合规性信息，请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)